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SMALL-ANGLE MULTIPLE SCATTERING ON A FRACTAL
SYSTEM OF POINT SCATTERERS

V.V.UCHAIKIN

Ulyanovsk State University
Institute for Theoretical Physics

42 L. Tolstoy Str., 432700 Ulyanovsk, Russia
E-mail: uchaikinr@sv.uven. ru

Multiple scattering of classical particles on a system of point scatterers distributed
in space in a fractal fashion is considered in the small-angle approximation. The
asymptotic regime of this process is described by a fractional differential equation
generalizing the ordinary diffusion in the angle space equation. The solution of
the problem is presented both in terms of stable distributions and in terms of
Fox-functions. Main features of the obtained solutions are discussed.

1 Introduction

Small-angle x-ray and neutron scattering experiments are efficient tools for study-
ing the structure of condensed matter. Measurements of the light or cosmic rays
from distant sources play the same role in studying the large-scale structure of the
Universe. From mathematical point of view, the problems belong to the class of
inverse problems solved in terms of the multiple scattering theory.

The ordinary multiple scattering theory assumes that the random spatial distri-
bution of scatterers is a homogeneous Poisson ensemble, i.e. different scatterers are
placed independently of each other. That is just what guarantees the exponential
character of the free path distribution and leads to the Boltzmann master equation.
In the region of large depths and small angles the equation takes the form of the
diffusion (in angle space) equation called the Fokker-Planck equation. Its solution
is nothing but the two-dimensional (in angle space) Gauss distribution called also
the Fermi distribution. However, above-mentioned assumption becomes invalid for
fractal media characterized by long-range correlations of the power type.

One approach to solution of the problem is developed by S.Maleyev 1. He
has considered a medium with fractal pores distributed uniformly in space. As
a result the superdiffusion behaviour of the angular distribution has been found.
Another approach is developed in our previous work 2, where the fractal medium
is considered as a set of identical point scatterers distributed in space in fractal
manner by means of the Levy flight procedure (see for details ,45). This model
reveals the subdiffusion behaviour of the angle distribution,

The present work combines both of these ideas. We consider here a set of
fractal clusters distributed in space in a fractal manner. As a result, we obtain a
two-parametrical family of angular distributions. The family includes the Fermi
distribution, the subdiffusion and superdiffusion distributions as particular cases.
They obey fractional differential equations and are presented both in terms of stable
distributions and in terms of Fox-functions.
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2 Basic postulates of the small-angle scattering theory

Let a particle move from the origin of coordinates along the x-axis. After the
scattering, the particle will be characterized by the vector angle ) of deviation

from the initial direction C20 of the motion

e5= - do

The following postulates form the well-known basis of the small-angle approxima-
tion in the scattering theory.

i) The particle is on the x-axis during all its motion even though the (small)

vector 0 differs from zero.
ii) Vector ) stays constant between points of scatterings X1 , X1 +tX 2 , XI +X 2 +

X3.... and undergoes random jumps 61, 62, 63,... at these points, so

N(x)

~(X) 6 i
i= 1

where N(x) is the random number of scatterings on the segment [0, x].
iii) The random variables X 1 , X 2 , X 3, ... are independent of each other and have

the same distribution density q(x).
iv) The random variables 0)1, 62, 1)3, ... are independent of each other and of

X1 , X 2 , X 3,... and identically distributed with the density u(0).

v) The distribution a(W) is concentrated in such a small region near zero that the

vectors O) and 6(x) may be considered as two-dimensional vectors and integration

with respect to 0 may be extended to the whole plane R 2 .
On these assumptions, the angular distribution density p(0, x) of the particle

passed the path x is given by the sum

p(O, x) 3 (O)Q(&) + u(O• J Q(x - x)~'d'
X

u • a(O) J Q(x - z')q * q(x')dx'±

0x

0U *- * UA( / Q(x - x')q * q * q(x')dx' +..1
0

Here * means convolution of distributions
X

q * q(x) J &q(x-

0

R2
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and
00

QX q (x') dx'.

Represent (1) in the form

p(W, x) J Q(x - x')f(W, x')dx'. (2)

0

The function f(W, x) is the density of collisions and can be expanded in the collision
number series

f(O, x) = 3(W)3(x) + ±(W)q(x)+

+a * o,()q * q(x) + a * o, *o()q * q * q(x) +

00

E ••(n)(W)q(n)(x), (3)

n=O

where

0(°) (0), Al)( JA' 0'(J, cr(A = an) A . ... c(), n > 1

n

and so are q(n)(x). It is easy to see that the distribution (3) is a solution of the
master equation

f(w, x) _(J) 3(x) + f dx'q(x - x') J do, (W- 6')f<(1, x'). (4)

0 R2

Formula (2) together with master equation (4) gives a complete description of the
problem.

3 The scattering theory for a homogeneous medium

The ordinary theory of multiple scattering appears as a result of the addition of
two further postulates to those mentioned above:

vi) The mean square angle of a single scattering has a finite value
00

(,92) = JU()02dW= 27Ja(O)03d0 <00.

R2 0

vii) The random variables X 1, X 1 + X 2, X 1 + X 2 + X 3,... form the Poisson

ensemble, i.e. the increments X1, X 2 , X 3, ... are distributed according to the expo-
nential law

q(x) = ye-", p > 0. (5)
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Inserting (5) into (2) and (4) we obtain two expressions

x

p(O, x) = e-1' I el" f(O, x')dx',

0

f(Ox) 3(-)3(x) + dO'-(0W- i)Jye-"x ei'x'f(6,x')dx'

R.2 0

which after simple transformations take a form of the integro-differential kinetic
equation (the Boltzmann equation)

ap(_ x) - ,p(O, x) uJ do',(W - ')p(0', x)
R2

with the initial condition

p(0, 0) = 6(0).

In the large x-asymptotics, the equation reduces to the ordinary diffusion equation

09, DV p(O, x) (6)
Dx

with D =L(3 2 )/2. It is supposed here that o-(0) is an axially symmetric function

depending on f01 = 0.

4 The scattering theory for a fractal medium

A passage from a homogeneous medium to a fractal one is performed by the re-
placement of postulates vi) and vii) with the following:

vi)* The angular distribution of particles scattered on a single fractal cluster is
characterized by the power law 1

I oa(i)d AO, 0 -* oo, < a <2. (7)

IW1>0

vii)* The free path distribution in a fractal path medium has a long power tail
too 2.

Q( -)Bx-0, x- o, 0<3<1. (8)

Note that the mean square angle in the first case and mean free path in the second
one are infinite.

The information given by (7) and (8) is enough to find the asymptotic behaviour
of the distribution p(O, x) at large distances x. To do this we apply the Fourier-
Laplace transform

00

p(k, A) = fdOJ dxe Ap, x),
2

0
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where W is a two-dimensional vector and /W is the scalar product. Formulas (2) and
(4) take the following form:

p(k, A) [1 - q(A)]f((k, A)/A,

f(k, A) = 1 + q(A) o- (k)f (k, A).

Combining them we get

A) 1 - q(A)

A[1 - q(A)o,()]

This is the Montroll-Weiss result for random walk with trapping in a two-
dimensional space 6 (see, also 7 and 8).

According to the Tauberian theorem 9, the relations (7) and (8) determine
behaviour of transforms oa() and q(A) at small arguments:

I - or(k) - ak', k -4 0, a = 2`1(1 - a/2) A
r(1±+ca/2)

IX-q(A) - bA13, A -+O, b =F(1 -,3)B.

In their turn, these expressions make it possible to find the asymptotic form for
p(k, A):

AP- 1
p(k•, A) - Pas(k, A) AP3 +Ckc' A--0, k--* (9)

with C a/b, whence

Pas (d,) = I _A _ A3-

(2Fr)3 i_,dA AO3 + Ck e-+
L R

2

2 (Cx'3) -2/c k'A3)(•(Cx'3)-1/0') (10)

where

,dA'dkA A'-k e-}-a (11)
(27r) i JAO3 + kc

L' R
2

On the other hand, Eq. (9) rewritten in the form

A.63pa,(k, A) = -Ck'paos(k, A) + A13- 1,

can be considered as the Fourier-Laplace transform of the fractional differential
equation. In terms used in the book 10 it has the form:

D~o+a(o, x) = -C(-Ao)c 2poas(, X) + - 6(
r(1Pa -0, X) (12)

with the initial condition

pas(0, 0) = 3(0).
When a --ý 2 and /3 -4 1 the equation reduces to the ordinary diffusion equation
(6) with D = C.
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5 Results

The integral (11) giving the solution of the equation (12) via (10) may be repre-

sented in two forms ". The first of them is

XP (Ce A ( e) (W•/1)g()(X)X2•/cx (13)

0

where g1 o) (x)and gc)(O) are the one-dimensional one-sided stable density and the
two-dimensional axially symmetrical stable density determined by their Laplace
and Fourier transforms respectively:

00

Je 91-(x)dx =-

0

and

J e•g•7(J)dO = e-
R2

Stable distributions are described in detail in 11,12
The second form uses the H-functions - generalized hypergeometrical functions,

also called the Fox functions 13

( (a,,a, .). (aP,'aP) Zim c1 ()k3
kz (bl,/31 ). (bq,/3q) EE kI k

j=1 k=0 C

where m, n, p, and q are integer numbers such that 0 < n < p and 1 < m < q; cai
and /3j are positive,

sjk = (bj + k)/lj

fl r(b, - )3Ijk) r(1 - al + ••Sjk)
I=1,lI•j l11

c = q p

fJ 17(1 - b, + /318jk) 11 P(al - aISjk)
I=m+1 /=n+l

In terms of H-function, the angular function 'P(") (J) looks as follows

83 (2\2+aH ((H32 (-1, 1/a)(-a/2, 13/2)(1 - a/2,1/2))
S(0) = - 2 0 (0, 1/,)(-1, i/00 ' z <

T, (a ' () = I H231( 0 (1, 1/a)(1,3f/a) )
2 r(aO)2 H 23 (1,1/ )(1, 1/2)(1, 1/2) ' 1< c, < 2

When a = 2 and 3 = 1

9g1)(x) = o(x - 1),
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Sexp {- 2 /4} (14)

and the density (13) reduces to the ordinary result for a homogeneous medium

pas(0, x) = 1 exp {-/(4Cx)}

4ldx

with the diffusivity C. This is the two-dimensional Gauss distribution with the
mean square angle

(2) : Jp Ws(, X)02d5 dW 4Cx, (15)

R%2

describing a normal diffusion.
When a < 2 and /3 = 1 we obtain

P.s (, x) = (CX)2/:g(()

The mean square angle is infinite now (due to the property of the density 92),

but we may take

30 = (CX)1/-

as the measure of the angular distribution width. This formula reveals a more
rapid broadening of the angular distribution than in the normal case (15). We
see here a superdiffusion regime considered in 1 (a more detailed consideration for
N-dimensional space is performed in 14).

When we have the opposite case, a = 2 and /3 < 1, the mean square root of the
scattering angle 0 exists and is

(02)1/2 (4C)1/2 0/2, /3 < 1.

This is a subdiffusion 15

In the general case the rate of broadening the angular distribution is determined
by the exponent 13/a:

30 = C-IOx•1/.

Thus the multiple scattering reveals the subdiffusion asymptotic behaviour if 3/ca <
1/2 and superdiffusion one if ///a > 1/2. Both the regimes are covered by term
"anomalous diffusion" (see 8,16 and references therein).

However, not only the rate of broadening the angular distribution changes by
passing from homogeneous medium to fractal one: the very shape of the density
changes too. Whereas (2,1)(W) is simply the two-dimensional Gaussian distribu-

tion, the densities 91)(0), a < 2, are two-dimensional symmetrical stable densi-
ties with characteristic exponent a. They have a dome-shaped form near zero with
the maximum value

(a, 1)() -(1 + 2/a)
47r
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long tails of a power type

(c,),- [F(1 + o,12) 12 0--2 no_40
2 0) L 2iir sin(a ir/2) O ~ 2

and no moments of the order > a (see 10). On the contrary, the densities 2P)A0 ,

)3 < 1, diverge logarithmically at zero

22irP(1 - 0'0 0

rapidly falling tails

x 0/) 2(-0/( -)exp {~(2 _ 3)00/(2-,3) (0/ 2 )2/(2-,)} 0 00 n (16)

and finite moments of all positive orders

2fW W=4 [F (n + 1]
I Fp +±1)

R12

Note that (16) reduces to (14) when ~3 -*ý 1.
In the case ae = 1, ~3 = 1/2, the density q'2(0 is expressed in terms of the

incomplete gamma function:

T2 (W_ (47r)3/e 2 4(1/2, 2/4).
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